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and the phases of about 70 more were found in terms of a 
symbolic sign A. The value of A was then determined from 
53 aberrant triples with about 85% consistency. A much 
higher level of consistency is not expected since the three E's 
in each aberrant triple are seldom very large (the negative 
regions in the benzene transform reach only one-third the 
height of the positive regions). One MULT"AN cycle based on 
these 140 reflexions with fixed signs led to an E map in which 
we could easily identify all 30 non-hydrogen atoms in the two 
molecules. 

In retrospect, the structure could probably have been 
dctermined from the initial M U L T A N  E map with a little 
more persistence on our part, since 20 of the 30 highest 
peaks turned out to be correct in the end. However, most of 
the atoms belonging to the ring substituents were missing 
and, moreover, the false peaks allowed three possible 
orientations of each naphthalene group. The eventual 
solution would not have been so straightforward. 

We have seen here an example of planar, parallel, similarly 
oriented, six membered rings giving rise to aberrant triples at 
a troublesome level. The question arises: are all these 
conditions (planar, parallcl, similarly oriented, six-membcred, 
ring) necessary for the same difficulty to arise? If we restrict 
our attention to planar rings it would appear that the only 
other essential feature is that the rings must be parallel. It is 
well known that the Fourier transform of a circle (i.e. the 
limit of an n-membered r i n g ) i s  a zeroth-order Bessel 

function. This has a negative annulus of depth 0.4 times the 
magnitude of the origin peak, i.e. this trough is relatively even 
deeper than in the benzene transform and it will produce 
aberrant triples in just the same way. The arguments of 
Thiessen & Busing (1974), that pairs of such rings give rise 
to more complex transforms but to the same aberrant triples, 
still hold. If rings with equal numbers of atoms lie in parallel 
planes but in dissimilar orientations, the transform will be 
complex, in general, but the real part will be similar to the 
Bessel function, and aberrant triples will still occur. Hence 
aberrant triples can be a problem when a structure is 
dominated by similar, parallel, planar rings. Three- and 
four-membered rings are too far from circular for our 
argument to apply. 

References 

MAIN, P., WOOLFSON, M. M., LESSINGER, L., GERMA1N, G. 
& DECLERCQ, J. P. (1974). M U L T A N  74. A System of 
Computer Programs for  the Automatic Solution of  Crystal 
Structures fi'om X-ray DifJ'raction Data. Univs. of York, 
England and Louvain, Belgium. 

SnELDRICK, G. M. (1976). S H E L X  76. Program for  crystal 
structure determination. Univ. of Cambridge, England. 

THIESSEN, W. E. & BUSING, W. R. (1974). Acta Cryst. A30, 
814-821. 

Acta Crvst. (1981). A37, 132-133 

A varying-step algorithm for the numerical integration of Takagi-Taupin equations. By Y. EPELBOIN, 

Laboratoire de Min&alogie Cristallographie, associd au CNRS,  Universit~ Pierre et Marie Curie, 4, Place Jussieu, 75230 

Paris CEDEX 05, France 

(Receieed 11 June 1980; accepted 16 July 1980) 

Abstract 

A varying-step algorithm is presented which allows the 
automatic selection of the step for the integration of 
Takagi-Taupin equations. 

Takagi-Taupin equations may be solved analytically only in 
a few cases. Various methods have been suggested for 
numerical integration (Taupin, 1964: Authier, Malgrange & 
Tournarie, 1968). More recently Petrashen (1976) has 
suggested a varying-step algorithm to take into account the 
fast oscillations of the amplitude of the wave fields near the 
edges of the Borrmann fan. "l"he main difficulty is in finding a 
method of adapting the local integration step to its best value. 
We have developed an algorithm in which this step is 
automatically chosen throughout the numerical integration. 

This new algorithm permits either faster calculations by a 
factor of two to three without increasing the precision of the 
integration or a much better accuracy in all details of 
simulated images of Lang section topographs. 
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It is based upon the following three considerations: 
(1) Choosing of integration step is dependent upon the 

local value of the extinction distance (Epelboin, 1977). 
(2) The interaction of a defect with the wave fields is 

weaker near the reflected edge of the Borrmann fan. 
(3) The amplitude of the wave fields increases tremen- 

dously in the direction of the direct image of a defect 
whenever it exists. 

Firstly, the integration network is established according to 
the above ideas. 

For this purpose the zeros of the J0 Bessel functions are 
calculated and the horizontal integration step is chosen in 
such a way that between two zeros at least five steps are 
calculated (Fig. 1). It is thus possible to calculate the 
amplitudes of the wave fields near the edges of the Borrmann 
fan without losing any oscillation. 

To decrease the computation time the integration step may 
be increased wherever the amplitudes of the wave fields vary 
more slowly. Moreover, the integration step may be larger 
near S,, than near S 0  ̀ due to the weak interaction of any 
defect with the wave fields. 
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Fig. 1. Principles of the integration network. 

When the defect possesses a direct image, its shape is 
roughly calculated according to the kinematical theory 
(Authier, 1967) and the length of the integration step is 
decreased in the corresponding area (Fig. I). 

The Takagi-Taupin equations are then integrated. The 
program automatically switches from an integration net- 
work taking into account the direct image to another one 
without it, when it is needed. This automatic adaptation of 
the program to the diffraction conditions permits the 
simulation of the section topograph of a dislocation with high 
accuracy. We have been able, for example, to determine the 
direction of the Burgers vector of a dislocation through the 
features of its direct image (Fig. 2). 

Thus it is now possible to simulate section topographs with 
good accuracy in all parts of the image. More details about 
this new routine DEFV will be given in a further paper. 

Topograph shown in Fig. 2 is from Dr M. Lefeld- 
Sosnowska (University of Warsaw). Its contrast will be 
discussed in a work currently in progress in collaboration 
with A. Authier. 

Fig. 2. Section topograph of a silicon wafer, Mo Ka, 333. 

References 

AUTHIER, A. (1967). Adv. X-rayAnal. 10, 9-31. 
AUTHIER, A., MALGRANGE, C. St. TOURNARIE, M. (1968). 

Acta Cryst. A24, 126-136. 
EPELBOIN, Y. (1977). Acta Cryst. A33, 758-767. 
PETRASHEN, P. V. (1976). Fiz. Tverd. Tela (Leningrad), 18, 

3729-3731. 
TAUPIN, D. (1964). Bull. Soc. Fr. Mln :ral. Cristallogr. 87, 

469-511. 

Acta Cryst. (1981). A37, 133-135 

A general rule for origin specification in a n y  space group. By SVEN HOVMOLLER, Department of Structural 
Chemistry, A rrhenius Laboratory, University of Stockholm, S-106 91 Stockholm, Sweden 

(Received 2 June 1980; accepted 1 September 1980) 

Abstract 

A general and simple rule for the derivation of which 
reflections should be used for fixing the origin in any of the 
230 space groups is given. 
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The number of reflections needed to specify the origin is 
identical to the number of elements in the seminvariant 
vector of that space group. For example, in P21212 ~, the 
seminvariant vector is (hkl) modulo (2 2 2). Thus three 
reflections are needed to specify the origin. In P4 the 
seminvariant vector is (h + k,/) modulo (2,0) and two 
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